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We extend the early time ordering theory of Cahn, Hilliard, and Cook �CHC� so that our generalized theory
applies to solid-to-solid transitions. Our theory involves spatial-symmetry breaking �the initial phase contains
a symmetry not present in the final phase�. The predictions of our generalization differ from those of the CHC
theory in two important ways: exponential growth does not begin immediately following the quench and the
objects that grow exponentially are not necessarily Fourier modes. Our theory is consistent with simulation
results for the long-range antiferromagnetic Ising model.
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The early time dynamics of systems quenched into un-
stable states is of considerable interest �1–8�. The first effec-
tive theory to treat this process was developed by Cahn and
Hilliard �1� and by Cook �2�. The Cahn-Hilliard-Cook
�CHC� theory applies to processes such as spinodal decom-
position and continuous ordering �4� and predicts that the
early evolution of the equal time structure factor following
the quench is characterized by exponentially growing Fourier
modes. A primary assumption of the CHC theory is that the
initial evolution of the system is driven by noise �i.e., if the
noise was absent, the system configuration would not evolve
at all following the quench�. Solid-to-solid transitions violate
this assumption. Our use of the term “noise” refers both to
the dynamical noise and to the randomness in the initial con-
ditions.

In this Brief Report we introduce a generalized theory
which describes the early time kinetics of spatial-symmetry
breaking transitions. We will show that the kinetics can be
separated into two well defined stages for systems with ef-
fective long-range interactions. In the first stage symmetry
breaking fluctuations grow nonexponentially. In the second
stage the evolution crosses over to exponential growth analo-
gous to CHC. When the initial phase is a solid, we predict
that the objects which grow exponentially are not Fourier
modes.

Binder �5� showed that the CHC theory is valid only when
the effective interaction range is large, R�1 �9�. Binder’s
prediction has been confirmed in Ising model simulations
�10,11�. There is evidence that many physical systems, such
as polymers �5� and metals �12�, have effective long-range
interactions. It is therefore natural to develop our theory in
the context of a long-range model.

When R is large, the noise is effectively small. We will
demonstrate this below by rewriting the dynamical equations
of motion in terms of dimensionless lengths �in units of R�,
whereupon all noise terms are damped by the factor R−d/2.
This suggests expansion of the system configuration in pow-
ers of R−d/2 �13� which separates the noise independent back-
ground �of order R0=1� from the noise dependent fluctua-

tions �of order R−d/2�. Roughly speaking, the background
represents the overall shape of the system configuration and
the fluctuations represent typically small deviations from the
background. The CHC theory applies only when the back-
ground does not evolve in time. In the case of solid-to-solid
transitions, the background does evolve in time. By construc-
tion, the evolution of the background is noise independent,
and we will show that the background maintains its initial
rotational and translational symmetries.

We say that the phase transition involves spatial-
symmetry breaking if the initial phase contains a rotational or
translational symmetry not present in the final phase �14�.
When spatial-symmetry breaking occurs, we will show that
the background evolves toward a configuration that mini-
mizes the free energy subject to symmetry constraints. This
configuration is a stationary point of the free energy and is
unstable to symmetry breaking fluctuations. We distinguish
between two stages of early time evolution: stage 1, in which
the background is evolving, and stage 2, in which the back-
ground has sufficiently converged to the constrained free en-
ergy minimum. For R sufficiently large, we predict that the
growth of symmetry breaking fluctuations changes from non-
exponential �stage 1� to exponential �stage 2� �15�. Stage 2
evolution in many ways resembles the CHC theory.

The mathematical development of our theory occurs in
the context of a time dependent Ginzburg-Landau model
with explicit long-range Kac interactions �17�. The noncon-
served field ��x� , t� plays the role of an order parameter and
evolves according to the Langevin dynamics,

���x�,t�
�t

= − M
�FR���
���x�,t�

+ �M�̃�x�,t� . �1�

FR��� is the free energy of the configuration � at time t and
R represents the effective interaction range. The Gaussian
white noise �̃�x� , t� has zero mean and second moment
��̃�x� , t��̃�x�� , t���=kBT��t− t����x� −x���. We set M =1 corre-
sponding to the rescaling of time, t→ t�= t /M. The drift term
is given by

−
�FR���
���x��

=� ddx���R�x�����x� − x��� + f���x��� + h �2a�
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=��R � ���x�� + f���x��� + h , �2b�

where �R is a Kac potential of the form �R�x��=R−d��x� /R�.
The function f represents entropic forces deriving from the
degeneracy in coarse graining �. Without loss of generality,
we set f��� 	�=0=0. The symbol h either represents an exter-
nal field or chemical potential.

We scale all lengths by R so that Eq. �1� simplifies to

�u�r�,t�
�t

= −
�F�u�
�u�r�,t�

+ R−d/2��r�,t� , �3�

where r�=x� /R, and

u�r�,t� = ��x�,t� , �4�

−
�F�u�
�u�r��

= �� � u��r�� + f�u�r��� + h . �5�

The parameter R in Eq. �1� appears solely as a prefactor to
the noise term. The term ��r� , t�=Rd/2�̃�x� , t� represents
Gaussian white noise with zero mean and second moment
���r� , t���r�� , t���=kBT��t− t����r�−r���, which follows from
the identity a−d��x� /a�=��x��.

The form of Eq. �3� suggests expanding u in the small
parameter R−d/2,

u = u�0� + R−d/2u�1� + R−du�2� + ¯ . �6�

We substitute Eq. �6� into Eq. �3� and obtain the dynamical
equations,

�u�0�

�t
= −

�F�u�0��
�u

= � � u�0� + f�u�0�� + h , �7�

�u�1�

�t
= Lu�1� + � , �8�

where

L� = � � � + f��u�0��� �9�

and f��u�=df /du. We remark that the nonlinear dynamics of
u�0� in Eq. �7� is deterministic and decoupled from higher
orders. The dynamics of u�1� is stochastic, linear, and de-
pends on u�0� through L.

As we have mentioned, the CHC theory emerges as the
evolution of u�1� when u�0� is a stationary point of the free
energy. Let us see how this works for a disorder-order tran-
sition occurring after a rapid quench from infinite to finite
temperature and h=0 �recall that f�0�=0�. At t=0 the system
is initially disordered so Eq. �7� has the trivial solution u�0�

=0 for all time. With this solution, Eq. �8� can be solved in
Fourier space,

u�1��k�,t� = u�1��k�,0�eD�k��t + �
0

t

dt�eD�k���t−t����k�,t�� , �10�

where D�k��=��k��+ f��u�0�=0�. The structure factor S�k , t�
= �	�	2� /V can be calculated using Eq. �4�, thus reproducing
the CHC theory. For spin systems the volume V equals the
total number of spins because the lattice spacing is taken to
be unity.

We can determine the time scale for which the CHC
theory is applicable. Equation �6� is meaningful when the
neglected O�R−d� terms are small. One requirement is that
R−d/2u�1��u�0�
1. The exponential growth of u�1� from Eq.
�10� suggests that the linear theory breaks down at a time
t� ln R �5,11�.

For many phase transitions �such as solid to solid� we
need to consider the evolution of both u�0� and u�1�. Equation
�8� predicts exponential growth of u�1��t� whenever L is time
independent, which from Eq. �7� occurs when
�F /�u�0��x , t�=0. In general, the initial configuration
u�0��t=0� will not be such a stationary point. We will show
that, due to symmetry breaking, u�0� converges to an unstable
stationary configuration u�. Correspondingly, L will con-
verge to a time independent operator. This instability of u�

means that L will have positive eigenvalues, corresponding
to the unstable symmetry breaking growth modes.

Let G be the symmetry group containing rotations under
which both u�0��r� ,0� and ��r�� are invariant and containing
translations under which u�0��r� ,0� is invariant. To show that
Eq. �7� preserves these symmetries we discretize

ut+	t
�0� = ut

�0� + 	t�� � ut
�0� + f�ut

�0�� + h� . �11�

A short calculation establishes that if ut
�0� is invariant under

G then so is ut+	t
�0� . By induction, this establishes that u�0��r� , t�

is invariant under G for all t �18�.
How does u�0� evolve for a phase transition with symme-

try breaking? We see from Eq. �7� that F�u�0�� is nonincreas-
ing. Physically, F must be bounded from below, so we expect
u�0� to converge to some configuration u�. This convergence
occurs on a time scale independent of R because R does not
appear in Eq. �7�. We know that u� is not the stable phase for
a symmetry breaking transition because Eq. �7� preserves the
spatial symmetries of the initial configuration. Therefore we
expect that u� is an unstable free energy stationary point.
Parallel to the evolution of u�0�, symmetry breaking fluctua-
tions R−d/2u�1� evolve according to Eq. �8�. These fluctuations
are unstable and, if u�0� has sufficiently converged to u�, will
grow exponentially for a time proportional to ln R, analogous
to the predictions of CHC.

We conclude that spatial-symmetry breaking phase transi-
tion kinetics can be decomposed into two stages:

�1� t
 t0: Nonlinear evolution of u�0� toward u�, a con-
figuration of minimum free energy subject to symmetry con-
straints. The configuration u� is not the stable phase. The
dynamical equation for u�1� is linear but has an explicit time
dependence. Note that t0 is independent of R.

�2� t0
 t
 ln R: To a good approximation u�0� has con-
verged to u�. The linear theory of u�1� becomes analogous to
the CHC theory and describes exponential growth of the un-
stable symmetry breaking modes.

These two stages are illustrated in Fig. 1�b�. In contrast,
there is no stage 1 process in the CHC theory, as illustrated
in Fig. 1�a�.

Phase transition kinetics without spatial-symmetry break-
ing, such as solid to fluid, are qualitatively different. Here
u�0� will evolve toward u� but, unlike the symmetry breaking
case, u� is the stable phase because no spatial symmetries are
lost in the transition from initial to final configuration �sym-
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metry breaking does not occur�. Note that all the interesting
dynamics in this transition occurs through u�0�, which is in-
dependent of the noise. This process is illustrated in Fig.
1�c�.

Let us see how exponential growth arises in the second
stage of a symmetry breaking transition by considering Eq.
�7�. Because L is a real and symmetric linear operator, it has
a complete orthonormal eigenbasis and real eigenvalues �19�.
The eigenvectors of L are Fourier modes only if u�0� is uni-
form. We can express the dynamics of u�1� in the eigenbasis
of L,

�uv
�1�

�t
= �

v�

Lvv�uv�
�1� + �v = �vuv

�1� + �v, �12�

where v and �v represent the corresponding eigenvectors and
eigenvalues of L. The subscripts indicate eigenbasis
components, for example, uv=ddr�v�r��u�r�� and Lvv�
=ddr�v�r��Lv��r��=�v�vv�. The eigenvectors are normalized,
and we can show that ��v�t��v��t���=�vv���t− t��.

For times t� t0 the operator L is time independent and
Eq. �12� can be solved directly,

uv
�1��t� = uv

�1��t0�e�v�t−t0� + �
t0

t

dt�e�v�t−t���v�t�� . �13�

The exponential growth of u�1� is apparent. We can express
u�1� in the Fourier basis,

u�1��k�,t� = �
v

v�k��uv
�1��t� , �14�

where v�k�� is the Fourier representation of the eigenvector v.
If R is sufficiently large and there is a single largest eigen-
value �v, then a single eigenvector v will grow exponentially
faster than all others. In this case, and at sufficiently large
times, we can approximate

u�1��k�,t� � v�k���uv
�1��t0�e�v�t−t0� + �

t0

t

dt�e�v�t−t���v�t��� .

�15�

We see that the exponential growth of the eigenvector v im-
plies exponential growth of all the Fourier modes of u�1�,
�	u�1��k� , t�	2�e2�vt. These Fourier modes eventually domi-
nate all other contributions to the structure factor
S= �	��k� , t�	2� /V, provided that the linear theory is valid
�t
 ln R�.

We now compare our generalized theory to simulations of
the two-dimensional �2D� antiferromagnetic Ising model
with a long-range square interaction. This model contains a
disordered fluid phase, as well as clump and stripe solid
phases �20,21�. In the clump phase, localized regions of en-
hanced magnetization are arranged on a square lattice. In the
stripe phase, regions of enhanced magnetization are arranged
in periodic stripes. All fluid-to-solid phase transitions involve
symmetry breaking, as do the transitions between clump and
stripe phases. In contrast, solid-to-fluid transitions do not in-

u(0) u(0) u∗
u(0) u(∞)

FIG. 1. �a� The CHC theory is applicable if the initial configu-
ration u�0� is a free energy stationary point. CHC describes the
immediate exponential growth of Fourier modes, lasting a time
t� ln R. �b� For symmetry breaking transitions �e.g., solid to solid�
the early time kinetics of u�t� has two stages. In the first stage the
leading order contribution to u evolves deterministically and non-
linearly toward a symmetry-constrained �shaded plane� free energy
minimum u� over a time scale t�1. In the second stage, symmetry
breaking modes grow exponentially for a time t� ln R. �c� Without
symmetry breaking �e.g., solid to fluid� the leading order contribu-
tion to u evolves deterministically toward the stable phase u���
over a time scale t�1.
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FIG. 2. �Color online� Evolution of the structure factor peak
��	�max	2� /V� for the fluid-stripe transition in the antiferromagnetic
Ising model following a critical �h=0� quench. The CHC theory
correctly predicts exponential growth, beginning immediately after
the quench for this transition.
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FIG. 3. �Color online� Evolution of the structure factor peak
��	�max	2� /V� for the fluid-clump transition following an off-critical
�h�0� quench. The initial growth has two stages, confirming the
prediction of our generalized theory. The first stage is nonexponen-
tial and is independent of R. The second stage is exponential growth
of the symmetry breaking modes �in this case Fourier modes� in
analogy to the CHC theory.
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volve symmetry breaking because the uniform fluid phase
contains all possible spatial symmetries.

We use single-spin flip Monte Carlo dynamics to simulate
the Ising system. At each update a spin is selected at random
and flipped with the Glauber transition probability p= �1
+e�	E�−1. Time is measured in units of Monte Carlo steps per
spin �MCSs�.

In Figs. 2 and 3 we display the peak of the structure
factor, S�k� , t�= ���k� , t�2� /V, for fluid-to-solid phase transi-
tions following critical �h=0� and off-critical �h=0.8�
quenches. The final phases are stripes and clumps, respec-
tively. In both cases the temperature is reduced from T=� to
0.05. The critical and off-critical transitions are described,
respectively, by the CHC theory and our generalization. As
predicted, the off-critical dynamics can be separated into two
stages: initial nonexponential growth followed by an ex-
tended period of exponential growth. The growth modes are
Fourier modes for both types of quenches considered be-
cause the initial phase is disordered.

In summary, we have shown that the CHC theory can be
generalized to describe solid-to-solid transitions. The key in-

gredient of this generalization is spatial-symmetry breaking.
The predictions of our generalized theory differ from those
of the CHC theory in two fundamental ways: �1� the expo-
nential growth of the symmetry breaking modes does not
immediately follow the quench and �2� these symmetry
breaking modes are not generally Fourier modes. We have
performed simulations of the long-range antiferromagnetic
Ising model for the off-critical fluid-to-solid transition and
have confirmed the existence of a transient stage preceding
exponential growth of the structure factor. A separate paper
demonstrates the application of our theory to the case of the
long-range antiferromagnetic Ising model stripe-to-clump
transition �20�. We point out that our theory was developed
in the ideal case of defect free initial conditions.
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