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Beyond Cahn-Hilliard-Cook ordering theory: Early time behavior of spatial-symmetry-breaking
phase transition kinetics
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We extend the early time ordering theory of Cahn, Hilliard, and Cook (CHC) so that our generalized theory
applies to solid-to-solid transitions. Our theory involves spatial-symmetry breaking (the initial phase contains
a symmetry not present in the final phase). The predictions of our generalization differ from those of the CHC
theory in two important ways: exponential growth does not begin immediately following the quench and the
objects that grow exponentially are not necessarily Fourier modes. Our theory is consistent with simulation

results for the long-range antiferromagnetic Ising model.
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The early time dynamics of systems quenched into un-
stable states is of considerable interest [1-8]. The first effec-
tive theory to treat this process was developed by Cahn and
Hilliard [1] and by Cook [2]. The Cahn-Hilliard-Cook
(CHC) theory applies to processes such as spinodal decom-
position and continuous ordering [4] and predicts that the
early evolution of the equal time structure factor following
the quench is characterized by exponentially growing Fourier
modes. A primary assumption of the CHC theory is that the
initial evolution of the system is driven by noise (i.e., if the
noise was absent, the system configuration would not evolve
at all following the quench). Solid-to-solid transitions violate
this assumption. Our use of the term “noise” refers both to
the dynamical noise and to the randomness in the initial con-
ditions.

In this Brief Report we introduce a generalized theory
which describes the early time kinetics of spatial-symmetry
breaking transitions. We will show that the kinetics can be
separated into two well defined stages for systems with ef-
fective long-range interactions. In the first stage symmetry
breaking fluctuations grow nonexponentially. In the second
stage the evolution crosses over to exponential growth analo-
gous to CHC. When the initial phase is a solid, we predict
that the objects which grow exponentially are not Fourier
modes.

Binder [5] showed that the CHC theory is valid only when
the effective interaction range is large, R>1 [9]. Binder’s
prediction has been confirmed in Ising model simulations
[10,11]. There is evidence that many physical systems, such
as polymers [5] and metals [12], have effective long-range
interactions. It is therefore natural to develop our theory in
the context of a long-range model.

When R is large, the noise is effectively small. We will
demonstrate this below by rewriting the dynamical equations
of motion in terms of dimensionless lengths (in units of R),
whereupon all noise terms are damped by the factor R~%2.
This suggests expansion of the system configuration in pow-
ers of R™¥? [13] which separates the noise independent back-
ground (of order R°=1) from the noise dependent fluctua-
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tions (of order R~¥?). Roughly speaking, the background
represents the overall shape of the system configuration and
the fluctuations represent typically small deviations from the
background. The CHC theory applies only when the back-
ground does not evolve in time. In the case of solid-to-solid
transitions, the background does evolve in time. By construc-
tion, the evolution of the background is noise independent,
and we will show that the background maintains its initial
rotational and translational symmetries.

We say that the phase transition involves spatial-
symmetry breaking if the initial phase contains a rotational or
translational symmetry not present in the final phase [14].
When spatial-symmetry breaking occurs, we will show that
the background evolves toward a configuration that mini-
mizes the free energy subject to symmetry constraints. This
configuration is a stationary point of the free energy and is
unstable to symmetry breaking fluctuations. We distinguish
between two stages of early time evolution: stage 1, in which
the background is evolving, and stage 2, in which the back-
ground has sufficiently converged to the constrained free en-
ergy minimum. For R sufficiently large, we predict that the
growth of symmetry breaking fluctuations changes from non-
exponential (stage 1) to exponential (stage 2) [15]. Stage 2
evolution in many ways resembles the CHC theory.

The mathematical development of our theory occurs in
the context of a time dependent Ginzburg-Landau model
with explicit long-range Kac interactions [17]. The noncon-
served field ¢(x,1) plays the role of an order parameter and
evolves according to the Langevin dynamics,
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Fgl &] is the free energy of the configuration ¢ at time ¢ and
R represents the effective interaction range. The Gaussian
white noise 7(x,f) has zero mean and second moment
(X, ) 7(x",t")y=kgTo(t—t')8(x—x"). We set M=1 corre-
sponding to the rescaling of time, t—t' =t/ M. The drift term
is given by
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where Ay is a Kac potential of the form Ax(xX)=R“A(x/R).
The function f represents entropic forces deriving from the
degeneracy in coarse graining ¢. Without loss of generality,
we set f(¢) |¢=0=0. The symbol & either represents an exter-
nal field or chemical potential.

We scale all lengths by R so that Eq. (1) simplifies to

du(r,t) _ SF[u]
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where r=x/R, and
u(r,t) = ¢(x,1), (4)
OF[u] .
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The parameter R in Eq. (1) appears solely as a prefactor to
the noise term. The term 7(7,f)=RY?>%(x,t) represents
Gaussian white noise with zero mean and second moment
(n(r,)n(r" ,t"))=kyT8(t—1t')5(F—=r"), which follows from
the identity a=48(x/a)= 8(x).

The form of Eq. (3) suggests expanding u in the small

parameter R™92,

w=u®+ R p R 4 (6)

We substitute Eq. (6) into Eq. (3) and obtain the dynamical
equations,
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and f'(u)=df/du. We remark that the nonlinear dynamics of
u® in Eq. (7) is deterministic and decoupled from higher
orders. The dynamics of u s stochastic, linear, and de-
pends on u© through L.

As we have mentioned, the CHC theory emerges as the
evolution of u'" when u'” is a stationary point of the free
energy. Let us see how this works for a disorder-order tran-
sition occurring after a rapid quench from infinite to finite
temperature and 2=0 [recall that f(0)=0]. At =0 the system
is initially disordered so Eq. (7) has the trivial solution u(”
=0 for all time. With this solution, Eq. (8) can be solved in
Fourier space,

t
u(l)(lg,l)=u(1)(l€,0)eD(k)t+f dt’' PP k1", (10)
0

where D(K)=A(K)+f"(u”=0). The structure factor S(k,?)
=(|¢|*)/ V can be calculated using Eq. (4), thus reproducing
the CHC theory. For spin systems the volume V equals the
total number of spins because the lattice spacing is taken to
be unity.
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We can determine the time scale for which the CHC
theory is applicable. Equation (6) is meaningful when the
neglected O(R™9) terms are small. One requirement is that
RV <y =1. The exponential growth of u! from Eq.
(10) suggests that the linear theory breaks down at a time
t~1In R [5,11].

For many phase transitions (such as solid to solid) we
need to consider the evolution of both #® and u'". Equation
(8) predicts exponential growth of uV(r) whenever £ is time
independent, which from Eq. (7) occurs when
8F/8u(x,1)=0. In general, the initial configuration
u®(t=0) will not be such a stationary point. We will show
that, due to symmetry breaking, #”) converges to an unstable
stationary configuration u*. Correspondingly, £ will con-
verge to a time independent operator. This instability of u”
means that £ will have positive eigenvalues, corresponding
to the unstable symmetry breaking growth modes.

Let G be the symmetry group containing rotations under
which both «©(7,0) and A(7) are invariant and containing
translations under which u(o)(F,O) is invariant. To show that
Eq. (7) preserves these symmetries we discretize

w0 = u® + ATA 4 + f'?) + 1. (11)

A short calculation establishes that if uﬁo) is invariant under
G then so is #'%) . By induction, this establishes that u®(7,7)
is invariant under G for all ¢ [18].

How does u® evolve for a phase transition with symme-
try breaking? We see from Eq. (7) that F[u(?'] is nonincreas-
ing. Physically, F' must be bounded from below, so we expect
u® to converge to some configuration x*. This convergence
occurs on a time scale independent of R because R does not
appear in Eq. (7). We know that u” is not the stable phase for
a symmetry breaking transition because Eq. (7) preserves the
spatial symmetries of the initial configuration. Therefore we
expect that ™ is an unstable free energy stationary point.
Parallel to the evolution of u®), symmetry breaking fluctua-
tions R~%?u'V) evolve according to Eq. (8). These fluctuations
are unstable and, if ¥ has sufficiently converged to u*, will
grow exponentially for a time proportional to In R, analogous
to the predictions of CHC.

We conclude that spatial-symmetry breaking phase transi-
tion kinetics can be decomposed into two stages:

(1) t=t,: Nonlinear evolution of u® toward u*, a con-
figuration of minimum free energy subject to symmetry con-
straints. The configuration u* is not the stable phase. The
dynamical equation for «'") is linear but has an explicit time
dependence. Note that 7, is independent of R.

(2) ty<t=<InR: To a good approximation «® has con-
verged to u*. The linear theory of u'") becomes analogous to
the CHC theory and describes exponential growth of the un-
stable symmetry breaking modes.

These two stages are illustrated in Fig. 1(b). In contrast,
there is no stage 1 process in the CHC theory, as illustrated
in Fig. 1(a).

Phase transition kinetics without spatial-symmetry break-
ing, such as solid to fluid, are qualitatively different. Here
u® will evolve toward u* but, unlike the symmetry breaking
case, u” is the stable phase because no spatial symmetries are
lost in the transition from initial to final configuration (sym-
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FIG. 1. (a) The CHC theory is applicable if the initial configu-
ration u(0) is a free energy stationary point. CHC describes the
immediate exponential growth of Fourier modes, lasting a time
t~1In R. (b) For symmetry breaking transitions (e.g., solid to solid)
the early time kinetics of u(r) has two stages. In the first stage the
leading order contribution to u evolves deterministically and non-
linearly toward a symmetry-constrained (shaded plane) free energy
minimum u* over a time scale 7~ 1. In the second stage, symmetry
breaking modes grow exponentially for a time 7~ In R. (c) Without
symmetry breaking (e.g., solid to fluid) the leading order contribu-
tion to u evolves deterministically toward the stable phase u()
over a time scale 7~ 1.

metry breaking does not occur). Note that all the interesting
dynamics in this transition occurs through «(?), which is in-
dependent of the noise. This process is illustrated in Fig.
1(c).

Let us see how exponential growth arises in the second
stage of a symmetry breaking transition by considering Eq.
(7). Because L is a real and symmetric linear operator, it has
a complete orthonormal eigenbasis and real eigenvalues [19].
The eigenvectors of £ are Fourier modes only if «® is uni-
form. We can express the dynamics of 1) in the eigenbasis
of L,

ohtf,l)
ot

=2ﬁwfuf)l,)+ 7]U=)\qu}])+ My (12)

v

where v and A, represent the corresponding eigenvectors and
eigenvalues of L. The subscripts indicate eigenbasis
components, for example, u,=[d%v(FHu(F) and L,
=[d%v(F)Lv' (F)=\,6,,. The eigenvectors are normalized,
and we can show that {7,(1)n,(t'))=38,, 8(t—t").
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FIG. 2. (Color online) Evolution of the structure factor peak
({|pmax|®/ V) for the fluid-stripe transition in the antiferromagnetic
Ising model following a critical (A=0) quench. The CHC theory
correctly predicts exponential growth, beginning immediately after
the quench for this transition.
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For times t=1, the operator L is time independent and
Eq. (12) can be solved directly,

t
u(1) = ) ()M + f dr' ™y (1), (13)

)

The exponential growth of u'") is apparent. We can express
1D in the Fourier basis,

u (k1) = 2 v(®u (1), (14)

where v(k) is the Fourier representation of the eigenvector v.
If R is sufficiently large and there is a single largest eigen-
value \,, then a single eigenvector v will grow exponentially
faster than all others. In this case, and at sufficiently large
times, we can approximate

t
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We see that the exponential growth of the eigenvector v im-
plies exponential growth of all the Fourier modes of u'!),
(uD (K, 1)y e, These Fourier modes eventually domi-
nate all other contributions to the structure factor
S=(|p(k,1)[>)/V, provided that the linear theory is valid
(t=InR).

We now compare our generalized theory to simulations of
the two-dimensional (2D) antiferromagnetic Ising model
with a long-range square interaction. This model contains a
disordered fluid phase, as well as clump and stripe solid
phases [20,21]. In the clump phase, localized regions of en-
hanced magnetization are arranged on a square lattice. In the
stripe phase, regions of enhanced magnetization are arranged
in periodic stripes. All fluid-to-solid phase transitions involve
symmetry breaking, as do the transitions between clump and
stripe phases. In contrast, solid-to-fluid transitions do not in-
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FIG. 3. (Color online) Evolution of the structure factor peak
({|pmaxl?)/ V) for the fluid-clump transition following an off-critical
(h#0) quench. The initial growth has two stages, confirming the
prediction of our generalized theory. The first stage is nonexponen-
tial and is independent of R. The second stage is exponential growth
of the symmetry breaking modes (in this case Fourier modes) in
analogy to the CHC theory.
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volve symmetry breaking because the uniform fluid phase
contains all possible spatial symmetries.

We use single-spin flip Monte Carlo dynamics to simulate
the Ising system. At each update a spin is selected at random
and flipped with the Glauber transition probability p=(1
+¢PAE)~1 Time is measured in units of Monte Carlo steps per
spin (MCSs).

In Figs. 2 and 3 we display the peak of the structure
factor, S(lg,t)=<qb(l€,t)2)/V, for fluid-to-solid phase transi-
tions following critical (h=0) and off-critical (2=0.8)
quenches. The final phases are stripes and clumps, respec-
tively. In both cases the temperature is reduced from 7= to
0.05. The critical and off-critical transitions are described,
respectively, by the CHC theory and our generalization. As
predicted, the off-critical dynamics can be separated into two
stages: initial nonexponential growth followed by an ex-
tended period of exponential growth. The growth modes are
Fourier modes for both types of quenches considered be-
cause the initial phase is disordered.

In summary, we have shown that the CHC theory can be
generalized to describe solid-to-solid transitions. The key in-
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gredient of this generalization is spatial-symmetry breaking.
The predictions of our generalized theory differ from those
of the CHC theory in two fundamental ways: (1) the expo-
nential growth of the symmetry breaking modes does not
immediately follow the quench and (2) these symmetry
breaking modes are not generally Fourier modes. We have
performed simulations of the long-range antiferromagnetic
Ising model for the off-critical fluid-to-solid transition and
have confirmed the existence of a transient stage preceding
exponential growth of the structure factor. A separate paper
demonstrates the application of our theory to the case of the
long-range antiferromagnetic Ising model stripe-to-clump
transition [20]. We point out that our theory was developed
in the ideal case of defect free initial conditions.
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